Ice, Snow and Permafrost

Selection of Interesting Papers in relationship to Ice, snow and permafrost

Emanuele Forte

January 20, 2015

 

1. Annan, A. P. and Davis, J. L. , 1976, Impulse radar sounding in permafrost, Radio Science, 11, 383-394.

2. Arcone, S. A. , 1996, High resolution of glacial ice stratigraphy: a ground-penetrating radar study of Pegasus Runway, McMurdo Station, Antarctica, Geophysics, 61, 1653–1663.

3. Arcone, S. A., and Kreutz, K. , 2009, GPR reflection profiles of Clark and Commonwealth Glaciers in the Dry Valleys, Antarctica, Annals of Glaciology, 50, 121–129.

4. Arcone, S. A., Lawson, D. E., Delaney, A. J. and Strasser, J. C. , 1998, Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost, Geophysics, 63, 1573–1584.

5. Arcone, S. A., Spikes, V. B., Hamilton, G. S., 2005, Phase structure of radar stratigraphic horizons within Antarctic firn, Annals of Glaciology, 41, 10–16.

6. Bradford, J. H. and Harper, J. T., 2005, Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glacier, Geophysical research letters, 32, L08502.

7. Bradford, J. H., Nichols, J., Mikesell, T. D. and Harper J. T. , 2009, Continuous profiles of electromagnetic wave velocity and water content in glaciers: An example from Bench Glacier, Alaska, USA, Annals of Glaciology, 50, 51, 1–9.

8. Bradford, J. H., Harper, J. T. and Brown, J. , 2009, Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime, Water Resour. Res., 45, w08403, doi:10.1029/2008wr007341, 12pp.

9. Brosten, T. R., Bradford, J. H., McNamara, J. P., Gooseff, M. N., Zarnetske, J. P., Bowden, W. B. and Johnston, M. E., 2009, Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar, Journal of Hydrology, 373, 479–486.

10. Brown, J., Bradford, J. H., Harper, J. T., Pfeffer, W. T., Humphrey, N. and Mosley-Thompson, E. , 2012, Georadar-derived estimates of firn density in the percolation zone, western Greenland ice sheet, Journal of Geophysical Research, 117, F01011, doi:10.1029/2011JF002089, 14pp.

11. Brown, J., Harper, J. T., Pfeffer, W. T., Humphrey, N. and Bradford J. H. , 2011, High resolution study of layering within the percolation and soaked facies of the Greenland ice sheet, Annals of Glaciology, 52, 35–42.

12. Colucci, R. R., Forte, E., Boccali, C., Dossi, M., Lanza, L., Pipan, M. and Guglielmin, M. , 2014, Evaluation of internal structure, volume and mass balance of glacial bodies by integrated LiDAR and GPR surveys: the case study of Canin Eastern Glacieret (Julian Alps, Italy), Surveys in Geophysics, November 2014, DOI: 10.1007/s10712-014-9311-1., 22pp.

13. Eisen, O., Nixdorf, U., Wilhelms, F. and Miller, H. , 2002, Electromagnetic wave speed in polar ice: Validation of the CMP technique with high resolution dielectric-profiling and gamma-density measurements, Annals of Glaciology, 34, 150–156.

14. Fisher, A. and Kuhn, M. , 2012, Ground-penetrating radar measurements of 64 Austrian glaciers between 1995 and 2010, Annals of Glaciology 54, 179-188.

15. Forte, E., Dossi, M., Colucci, R. R. and Pipan, M. , 2013, A new fast methodology to estimate the density of frozen materials by means of common offset GPR data, Journal of Applied Geophysics, 99, 135-145.

16. Gacitúa, G., Tamstorf, M. P., Kristiansen, S. M. and Uribe, J. A. , 2012, Estimations of moisture content in the active layer in an Arctic ecosystem by using ground-penetrating radar profiling, Journal of Applied Geophysics, 79, 100–106.

17. Sold, L., Huss, M., Eichler, A., Schwikowski, M. and Hoelzle, M. , 2014, Recent accumulation rates of an alpine glacier derived from firn cores and repeated helicopter-borne GPR, The Cryosphere Discuss., 8, 4431–4462, doi:10.5194/tcd-8-4431-2014.

18. Godio, A. , 2009, Georadar measurements for the snow cover density, American Journal of Applied Sciences, 6, 3, 414-423.

19. Granlund, N., Lundberg, A., Feiccabrino, J. and Gustafsson, D. , 2009, Laboratory test of snow wetness influence on electrical conductivity measured with ground penetrating radar, Hydrology Research, 40, 1, 33-44.

20. Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E., Paetzold, R., Kimble, J. M. and Travis, R. , 2001, Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska, Permafrost and Periglacial Processes, 12, 179–190.

21. Lundberg, A., Richardson-Näslund, C., Andersson, C. , 2006, Snow density variations: consequences for ground penetrating radar, Hydrological Processes, 20, 1483–1495.

22. Macharet, Y. Y., Moskalevsky, M. Y. and Vasilensky E. V. , 1993, Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime, Journal of Glaciology, 39, 373– 384.

23. Machguth, H., Eisen, O., Paul, F. and Hoelzle, M. , 2006, Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent alpine glaciers, Geophysical Research Letters, 33, 13.

24. Mätzler, C. , 1996, Microwave permittivity of dry snow, IEEE Transactions on Geoscience and Remote Sensing, 34, 573–581.

25. Moorman, B. J., Robinson, S. D. and Burgess, M. M. , 2003, Imaging periglacial conditions with ground-penetrating radar, Permafrost and Periglacial Processes, 14, 319–329.

26. Murray, T., Stuart, G., Fry, M., Gamble, N. and Crabtree, M. , 2000, Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, Journal of Glaciology, 46, 389–398.

27. Nobes, D. C. , 1999, The directional dependence of the ground penetrating radar response on the accumulation zones of temperate alpine glaciers, First Break, 17, 7, 249-259.

28. Pettersson, R., Jansson, P. and Holmlund, P. , 2003, Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys, Journal of Geophysical Research, 108, F1, 6004–6005.

29. Previati, M., Godio, A. and Ferraris, S. , 2011, Validation of spatial variability of snowpack thickness and density obtained with GPR and TDR methods, Journal of Applied Geophysics, 75, 284-293.

30. Saintenoy, A., Friedt, J. M., Booth, A. D., Tolle, F., Bernard, E., Laffly, D., Marlin, C. and Griselin, M. , 2013, Deriving ice thickness, glacier volume and bedrock morphology of the Austre Lovénbreen (Svalbard) using Ground-penetrating Radar, Near Surface Geophysics, 11, 253-261.

31. Schwamborn, G., Wagner, D. and Hubberten, H.-W. , 2008, The use of GPR to detect active layers in young periglacial terrain of Livingston Island, Maritime Antarctica, Near Surface Geophysics, 6, 327–336.

32. Wollschläger, U., Gerhards, H., Yu, Q. and Roth, K. , 2010, Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site, The Cryosphere, 4, 269–283.

33. Wong, J., Rossiter, J. R., Olhoeft, G. R. and Strangway, D. W. , 1977, Permafrost: electrical properties of the active layer measured in situ, Canadian Journal of Earth Sciences, 14, 4, 582-586.